
Framework for Validation, Test and Analysis of Real-Time Scheduling Algorithms
and Scheduler Implementations

Jan Blumenthal, Frank Golatowski, Jens Hildebrandt, Dirk Timmermann
Institute of Applied Microelectronics and Computer Science

University of Rostock
Richard-Wagner-Str. 31, 18119 Rostock, GERMANY

{Jan.Blumenthal, Frank.Golatowski, Jens.Hildebrandt}@etechnik.uni-rostock.de

Abstract

This paper describes our work towards a rapid prototyp-
ing system for hard real-time systems focused on schedul-
ing algorithms and scheduler implementations. The aim is
to speed up the decision making process during selection
of a suitable scheduling algorithm for a real-time applica-
tion. The framework supports various kinds of real-time
scheduling algorithms which can be simulated for evalua-
tion purposes. Furthermore, implementations of these al-
gorithms can be tested in a real-time operating system with
real or synthetic workload. The algorithms are imple-
mented as software routines which are part of the operat-
ing system or realized within a coprocessor to free the op-
erating system kernel from time consuming scheduling op-
erations. Both kinds of implementations have to provide an
application programmers interface that hides the algo-
rithm from implementation issues. The target operating
system of our framework is mainly RT-Linux while devel-
opment for those systems is possible under Linux as well as
under Windows-NT. That framework is new in that it sup-
ports the selection of the right algorithm and the right
implementation for the target platform based on real-time
scheduling analysis.

1 Introduction

When designing an application requiring real time capabili-
ties of the underlying computer system a real time operating
system (RTOS) is quite often used to relieve the developer
from the burden of managing parallel execution of several
tasks. Furthermore, usage of the operating systems API
makes a software product portable to different hardware
environments and even to different operating systems using
the same API. The downside is that the developer has to
achieve his goal not only due to the possibilities but very

often also despite the limitations implicated by the OS. Es-
pecially in real time applications where execution time is a
strict constraint these limitations can not always be over-
come by any possible workaround leading to the desired
computational result.

One of these limitations is the scheduling algorithm imple-
mented in a particular RTOS. Most commercial systems use
static priority systems and only few of them offer alternative
algorithms. The availability of open source RTOS like
RTEMS or RT-Linux gives an opportunity to employ
scheduling methods more suitable for a given set of tasks
than the ones offered by off-the-shelf real time operating
systems.

In recent years some frameworks and tools has been devel-
oped based on schedulability analysis. Such frameworks are
Perts [5], RTGA [7], Stress [8] and Timewiz [9].

In [6] a reconfigurable scheduling framework for the RED-
Linux Real-Time Kernel has been shown.

EVASCAN [1][2] is a general framework which use YASA
[4] as tool for schedulability analysis. Operating system
support is included in form of timing information [3]. The
new redesigned framework called YASA adds a more ge-
neric framework in that it runs both under Windows and
under Linux with a real operating system as target.

The extended framework YASA presented in this paper aims
at evaluating a task set with given properties in terms of
schedulability and compliance with given execution time
constraints when using different scheduling algorithms and
scheduler implementations. Special attention was given to
dynamic scheduling methods and hardware supported
scheduling as these technologies can provide very good
performance but need thorough scheduling analysis to
guarantee timeliness of the scheduled task set. The paper
gives an overview over the main scheduling algorithms

used and the technology of scheduling coprocessors sup-
ported by the framework in section 2. Section 3 explains the
structure and working principle of the framework and sec-
tion 4 deals with special implementation issues and their
consequences for the usage of YASA. Finally, section 5
gives an outlook onto further development of the frame-
work.

The framework YASA presented in this paper aims at evalu-
ating a task set with given properties in terms of schedula-
bility and compliance with given execution time constraints
when using different scheduling algorithms and scheduler
implementations. Special attention was given to dynamic
scheduling methods and hardware supported scheduling as
these technologies can provide very good performance but
need thorough scheduling analysis to guarantee timeliness
of the scheduled task set. The paper gives an overview over
the main scheduling algorithms used and the technology of
scheduling coprocessors supported by the framework in
section 2. Section 3 explains the structure and working prin-
ciple of the framework and section 4 deals with special im-
plementation issues and their consequences for the usage
of YASA. Finally, section 5 gives an outlook onto further
development of the framework.

2 Basic Technologies

This section deals with the dynamic scheduling algorithms
used inside the YASA framework and the supported sched-
uling coprocessors.

2.1 Scheduling Algorithms

EDF [10] and LLF [11] have been proved to be optimal dy-
namic scheduling algorithms. Advantages of the dynamic
scheduling algorithms are a 100% processor utilization meet-
ing all deadlines. For implementation purposes it is easier to
implement EDF than LLF algorithm (see section 2.2.1). But
both algorithms have also some drawbacks. In an overload
situation all tasks of the given task set miss their deadlines
in the EDF algorithm (known as domino effect). Another
drawback is that with EDF it is possible to detect the mis s-
ing of a deadline only after it has happened. With LLF it is
possible to detect the missing of a deadline during the exe-
cution of tasks by the scheduler. On the other hand, if two
or more tasks have the smallest laxity the algorithm suffers
from thrashing, i.e. an intricate number of context switches.
Another drawback of the LLF algorithm is the computation
time intensive algorithm.

To overcome this drawbacks we have developed the En-
hanced Least Laxity First algorithm (ELLF). This algorithm
combine the benefits of both algorithms which are optimal-

ity, 100% processor utilization and determination of missed
deadlines prior to their occurrences. To minimize the long
runtimes for the determination of laxity values we use a
coprocessor as a hardware based accelerator. This coproc-
essor will also be supported by an application programmers
interface in RT -Linux and in the YASA framework presented
here.

2.2 Task Model for Dynamic Schedulers

A set of independent tasks τ (τi…τm) is to be executed on
real-time system. Each task τi ∈ τ is characterized by the
following parameters:

S(τ) start time of task set τ, booting time

A(τi) arrival time of task τI

C(τi) computation time of task τI

D(τi) deadline of task τI

P(τi) period of task τI

Based on this parameters scheduling decisions has to be
done.

2.2.1 Least Laxity First

For the Least Laxity First algorithm the following computa-
tions and times are important for the selection of the task
which starts next. The scheduling decision is made based
on the laxity of tasks. The task with the smallest laxity will
be executed.

L(τi) laxity of task τi

L(τi,t) laxity of task τi at time t

t time since bootup, 0 < t < infinite

d (τi,t) deadline in current period since bootup

D(τi,t) time until deadline of task τi at time t

= d(τi,t) – t (1)

cd(τi,t) computed time

C(τi,t) remaining computation time in period

= C(τi) – cd(τI,t)

To determine the laxity:

L(τi) = D(τi)-C(τi) (2)

The laxity at time t:

L(τi,t) = D(τi,t)-C(τi,t) (3)

Now we substitute D and C:

L(τi,t) = d(τi,t) – t – (C(τi) – cd(τi,t)) (4)

Based on equation (4) the scheduling decision in the LLF
algorithm is made. The task with the smallest laxity will be
selected for execution.

2.2.2 Enhanced Least Laxity First

The ELLF-algorithm [2] is an improvement of the LLF algo-
rithm. ELLF is more complex and makes its scheduling deci-
sions in two steps. Because the detailed description of this
algorithm is beyond the scope of this paper, only a short
description of the working principle is given here.

In the first step analogue to the LLF algorithm is determined
the task that has the smallest laxity. If there are more than
one tasks with that laxity value the step follows. In this step
out of the previously selected tasks the one with the earliest
deadline is chosen and brought to execution. The other
tasks enter are newly introduced task state (excluded state)
that prevents them from preempting from the currently run-
ning tasks. This decreases the amount of unnecessary con-
text switches which are typical for the LLF algorithm, which
make the LLF algorithm not usable.

2.2.3 Earliest Deadline First

Based on equation (1) the scheduling decision in the EDF
algorithm is made. The task with the smallest deadline will
be selected for execution.

2.3 Scheduling Coprocessors

One method to speed up scheduling is to move the sched-
uler function as a whole or in parts to a dedicated hardware
device. Of course, such a coprocessor is effective only if
the gain in execution speed of the implemented functions is
not consumed by the time needed to transfer input data and
computation results between the hardware device and the
operating system. Beside that, only functions that do not
require access to CPU internal resources (i.e. registers) can
be transferred to the coprocessor. Hence, for schedulers the
parts that are most efficiently implemented in hardware are
online computation of priorities, priority comparison and –
based on that operation - selection of one task to be exe-
cuted next. Although the latter two operations do not profit
from hardware realization in such a high degree as does pri-
ority computation that can rely on hardware para llelism, the
combination of all three parts of the scheduling operation in
one hardware device avoids the necessity to transfer task
priorities back to the operating system. Provided task states
and task parameters used for priority computation are stored
inside the coprocessor, communication overhead at sched-
uling time merely consists of an optional start signal for the

coprocessor and an identifier for the next task to run that is
transmitted back to the operating system as scheduling re-
sult.

Obviously, such hardware effort is justified only if the per-
formance gain is significant. Hence, the discussed here type
of scheduling coprocessors is used primarily for dynamic
priority algorithms like EDF, LLF or ELLF.

control logic

task module
0

task module
1

task module
n-1

comparator/
selector

output format
converter

address decoder

/c
s

/ld /rd tc
k

sc
he

d_
in

t

er
r_

in
t

da
ta

ad
dr

es
s

Figure 2.1 Scheduling coprocessor, i nternal structure

The coprocessors used in the rapid prototyping framework
described in the following sections have a structure as
given in Figure 2.1. Each task is represented by a functional
block – the task module – that determines priority values
and for that purpose holds task parameters and task states.
These values are accessible via registers that have to be
initialised during system setup and when new tasks are
added to the system. Task states have to be updated during
run time as they determine whether a task is active, i.e. takes
part in scheduling, or not. The number and meaning of other
parameters stored inside a task module depend upon the
implemented scheduling algorithm. For example, EDF algo-
rithm uses task deadlines as scheduling criterion. Hence
task modules for EDF scheduling store the deadline in rela-
tive form, i.e. the number of remaining time units until dead-
line is reached. This value is counted down automatically
while the task is active. A missed deadline is equivalent with
the deadline value being zero while the task is still active.
More complex algorithms like LLF or ELLF apart from the
deadline use the remaining run time of a task, a value that is
updated automatically as long as a task is executed. Task
laxity, the difference of remaining time until deadline and
remaining run time, is used to determine the order of task
execution. These computations are done simu ltaneously for
all tasks at scheduling time and thus make up the largest

part in execution speed gain compared to a software solu-
tion.

Priority values computed inside the task modules are com-
pared in the comparator module to determine the next task to
run. The strategy used therein depends on the employed
scheduling algorithm. The scheduling methods mentioned
above all search for the task with the smallest priority value
but there may be other algorithms that determine the biggest
value or combine the comparison with some other condi-
tions. In any case, the coprocessor returns an identifier that
names the task belonging to that value determined by the
comparator.

Although the described here coprocessors implement dif-
ferent algorithms, their interface to the host computer sys-
tem and thus to the operating system is the same. That al-
lows an easy integration of different hardware supported
scheduling algorithms into the operating system. For the
prototyping framework described in this paper that means
that different coprocessors can be compared with low over-
head regarding their suitability for a given task set since the
surrounding operating system routines do not have to be
altered significantly.

3 The YASA Framework

The YASA framework allows selection of the right sched-
uler during the design phase of a project while relieving the
programmer from the necessity to know details of the
scheduler implementation in different environments. There-
fore, the different schedulers are hidden behind an applica-
tion programmable interface (API). Usage of YASA in dif-
ferent operating systems is another reason to do so. We call
this layer the Executive. Derived from our goal to use differ-
ent schedulers and Executives there must be defined a small
and unambiguous but expandable API. The whole project is
designed to run on different hardware platforms and is only
restricted due to Executives depending on special operating
system functions.

In Figure 3.1 is shown the internal structure of the frame-
work. There are two main components the graphical user
interface (GUI) using the QT library and the command line
based simulation environment (dotted rectangle). The whole
developer project can be configured from within the GUI. It
is possible to define new tasks with properties like computa-
tion time, deadline, period or behaviour in case of a deadline
miss. For each task a start function can be declared. Fur-
thermore it is necessary to make some adjustments like se-
lecting the desired Executive and scheduler on each CPU.

Project manager

Taskset Configuration

ExecutivesSchedulers

Priority

ELLF

RT-Linux

Simulator

Compilation

Executive
OS-Patch

Executive
Startup

RMS

Logfile

Task
sources

Schedulers

Run

Co-
processor

Figure 3.1 Framework, internal structure

After entering all needed information the project can be
compiled. The compilation process includes all selected
components like Executives, schedulers, project functions,
task information and startup codes. These parts are linked in
different forms depending on characteris tics of the Execu-
tive. That can be a monolithic executable or a system of
several shared libraries. In some cases the kernel of the op-
erating system has to be recompiled. After making the Ex-
ecutive the project can be started. An internal log file
mechanism is registering all internal information like calling
times of the scheduler, deadlines, task switches or locking
of resources. After finishing the execution the log file is
evaluated by the graphical frontend and is illustrated in
clearly structured diagrams. By this it is possible to log
every action in the RTOS.

In the framework the different restrictions of the particular
operating system result in tight limits. It will not be possible
to run or compile certain task sets on every Executive if
these tasks use specific support functions of the OS. For
instance, the function malloc() to allocate memory is a
blocking function. For this reason it is not available in ker-
nel mode within the most desktop operating systems in con-
trast to embedded systems. Task sets using this function
can not compile successfully on Executives running in ker-
nel mode. The employment of kmalloc() restricts the task
sets to the maximum page size and to Executives running
under Linux and its derivates.

Another restriction is given due to the implementation of
the scheduling system. If the desired operating system sup-
ports only priority based scheduling the selection of a
scheduler will be restricted.

4 Implementation Issues

4.1 Software Scheduler Modules

The software scheduler modules are defined in small ANSI-
C modules. These modules, compiled as shared libraries or
statically linked, are loaded and initialised at runtime during
the starting phase of the Executive. Usually, the modules
can contain several member functions like init(), schedule()
or cleanup(). In the initialisation phase a pre-defined attrib-
ute structure is used to configure the scheduler. Due to
compatibility issues the schedulers are using only functions
of the Executive to communicate with the environment. In-
formation about the operating system and used hardware
are hidden from the scheduler modules.

During runtime of the Executive the member function sched-
ule() of the current scheduler module will be called every
time the system scheduler is called to determine the next
task to be executed. One result of the encapsulation pro cess
is that the actual scheduler function becomes very small.
For instance, a priority based scheduler consists of just 25
lines of source code and is able to run on different Execu-
tives.

4.2 Hardware Scheduler Modules

Another feature of the framework, although still in the de-
velopment phase, is the support of hardware scheduler
modules which can be combined with several Executives.
These scheduling coprocessors are realized in programma-
ble hardware (FPGA s) that can be loaded with different con-
figuration bit streams to implement different scheduling al-
gorithms. All these different hardware schedulers have an
identical user interface so that integration into the executive
becomes independent from the implemented scheduling
algorithm.

The projects of the framework are not bound to a special
scheduler type. So every task set can be scheduled with
either software schedulers or hardware schedulers to com-
pare the performance and trade performance gains against
the effort of additional hardware.

4.3 The Executive

The Executive describes the environment in which the task
sets and the desired schedulers are used. It provides an API
and hides the operating system from the task set. Access to
different operating system structures and functions like
threads or scheduling parameters is possible only via that
interface. Furthermore, additional internal functions like

making log files or synchronisation of task sets at start time
are included in the API.

In real operating systems the Executive is integrated mostly
by patching the original kernel. The final state of Executive
depends mostly on features of the operating system as well
as implementation details.

There are currently two completely different Executives the
Simulator and the RT-Linux Executive .

4.3.1 Algorithm Simulation

The algorithm simulator is a virtual multi processor machine.
This Executive can be combined with all available software
schedulers defined in the framework. It supports different
methods to handle deadline misses and is able to use differ-
ent protocols to assign resources such as semaphores and
mutexes. The simulator is independent from the operating
system.

After definition of a task set the GUI will generate source
code containing a task array with attribute information
about these tasks. Then, the compilation process will be
started with the translation of the core of the Executive as
shared library or Windows DLL. Next, the schedulers and
the task array will be compiled to serveral objects and linked
to one executable. The advantage in this is that the Execu-
tive has to be recompiled only if the developer changes its
settings. After compilation the project will be started using
information from the task array created earlier by the GUI.
All actions within the simulator are logged and parsed later
in the GUI.

One of the important restrictions of the simulator is that it is
not capable of simulating real programs. This Executive is
ignoring the start functions of tasks mentioned above. The
reason is that different Executives are running in different
system environments. To run real programs within the simu-
lator, it would be necessary to emulate the real world, in
particular the API of the operating system used in each task
set. Furthermore the interaction with the environment and
the dynamic behaviour would have to be emulated. This is
nearly impossible with reasonable simulation effort.

To alleviate these effects the framework provides methods
to define start times of asynchronous tasks and allocation
times of resources. These times are used to simulate block-
ings and standby times. It is necessary to have know-how
about progress of the tasks to get results close to reality.
That is why the simulator is only useful to get information
about general schedulability.

4.3.2 RT-Linux (Integration in RT-Linux / API)

Real time Linux (RT-Linux) is a hard real time extension to
conventional Linux. The current version 3.0 is available on
different hardware plattforms like x86, PowerPC and Alpha
and supports Symmetric Multiprocessing (SMP), too. We
chose RT-Linux due to the POSIX style API, the possibility
to change the original scheduler with small effort and be-
cause of the availability of the operating system source
code.

Usually, RT-Linux is started by loading several kernel mod-
ules like rtl_sched.o or rtl_fifo.o . The developer can change
or improve these modules if necessary.

RT-Linux uses a static priority based scheduler by default.
That means, that only non-suspended tasks with the high-
est priority will be chosen. This scheduler is very fast and
simple but static. In its spare time, that means if no real time
task is running, it will execute Linux as lowest priority
thread.

RT-Linux does not know anything about computation time,
computed time and deadlines so there were some enhance-
ments necessary. We simply added some variable declara-
tions to the specific schedulers, threads and scheduling
structures to store the required information. This is done in
the “Executive OS-Patch” of the RT-Linux Executive (Figure
3.1). We did not change the current API of RT-Linux due to
compatibility issues to conventional projects but we
patched some function bodies in the original scheduler
module to guarantee the functionality of projects using de-
fault values. There are added some API calls like
yasa_setscheduler() usage of which is optional.

Furthermore, based on rtl_sched.o we implemented an addi-
tional modular scheduler technology so that the scheduler
can be changed during runtime for every CPU. In this way
the developer can create its own task set on different CPUs
in conjunction with different schedulers.

All schedulers use the same data stru cture describing tasks.
These structures contain more data members than the cur-
rent scheduler may actually use. This is necessary since
these structures have to bridge the difference between the
task models of all schedulers and that of the operating sys-
tem.

When the developer creates a new project YASA will gen-
erate the source code of the task set, basically an array of
thread attributes. Next, YASA starts the compilation proc-
ess of the whole RT-Linux kernel and some new modules
named “yp_project.o”, “ys_scheduler.o” and “logfil-
ereader.o”. The first two modules are used to start the pro-
ject and setup the schedulers. The startup code of the RT-
Linux Executive initialises the threads using the parameters

contained in the task arrays. All threads will be started in
suspended mode. After successful creation of the task set a
synchronized start of the project will follow and will re-
schedule all real time threads having start time 0.

To integrate or to consider non real-time tasks within RT-
Linux system two possibilities exist. It is simple to integrate
those task as Linux threads or processes. But in this way it
is hard to communicate between RT-Linux threads and the
non real-time Linux threads. The other possibility is the in-
tegration as RT-Linux threads. Therefore it is necessary to
initialize the task structures with default parameters guaran-
teeing that these tasks are executed only when no real time
task is pending.

During run time the Linux thread will be executed in the idle
time of the real time kernel only. Hence, in fully utilized envi-
ronments that will seem like a hanging system. After reach-
ing the defined end time, the project will be stopped and the
third module “logfilereader.o” will be started to transfer the
scheduling information into user space.

Most of the schedulers used in YASA need detailed infor-
mation about tasks like computation time. The developer
should be aware that it can be a lengthy and intricate task to
determine the necessary values and that this must be done
before entering the periodic state of the threads during run-
time. The computation time is depending on everything in
the computer: CPU speed, memory performance, I/O activi-
ties, caches and of course the system environment. If the
computation time given to the scheduler is smaller than ac-
tual execution time many of the dynamic schedulers will not
work correctly.

4.3.3 RT- Linux Executive with HW-Scheduler

The RT-Linux Executive with hardware scheduler is an im-
provement of the RT -Linux Executive. It is similar to the Ex-
ecutive mentioned in section 4.3.2 but it is using a hardware
scheduler to speed up the scheduling process. Task sets
running successfully with the RT-Linux Executive run with
this Executive, too.

At start time of the Executive the coprocessor device is
loaded with a configuration according to the selected
scheduling algorithm and initialised with the parameters
from the task structure. Changes of the parameters in the
task structure have to be announced to the coprocessor.
Every time the system scheduler is called this Executive will
start the coprocessor to determine the next task to be exe-
cuted.

5 Conclusions

The framework presented in this paper gives the developer
the possibility to evaluate the schedulability of his applica-
tion from an early simulation with synthetic load to execu-
tion of real code using hardware or software schedulers.
Development is possible under and for different operating
systems.

The GUI of the framework allows an easy comparison of
scheduling methods and technologies by giving an over-
view over scheduling events, resource requirements or exe-
cution times. This makes YASA a good tool for education
purposes as well.

Future developments of YASA see the extension of the
range of supported scheduling algorithms and Executives.
Furthermore, a deeper integration of scheduling coproces-
sors.

References

[1] F. Golatowski, J. Hildebrandt, D. Timmermann:
Rapid Prototyping with Reconfigurable Hardware for Embed-
ded Hard Real-Time Systems. 19th IEEE Real-Time Sy stems
Symposium 98, WIP -Session, Madrid, Spain, 1998

[2] J. Hildebrandt, F. Golatowski, D. Timmermann
Scheduling: Coprocessor for Enhanced Least-Laxity-First
Scheduling in Hard Real-Time Systems, 11th Euromicro Con-
ference on Real-Time Systems, York, England, 1999

[3] F. Golatowski, D. Timmermann: Using Hartstone Uniproc-
essor Benchmark in a Real-Time Systems Course. Third
IEEE Real-Time Systems Education Workshop, Poznan, Po-
land, 11/98

[4] Yasa- Yet Another Schedulability Anayzer, University of
Rostock, 1998, http://www-md.e-technik.uni-
rostock.de/ma/gol/yasa/

[5] J. W. S. Liu, C. L. Liu, Z. Deng, T. S. Tia, J. Sun, M. Storch,
D. Hull, J. L. Redondo, R. Bettati, and A. Silberman: PERTS:
A prototyping environment for real-time systems. Interna-
tional Journal of Software Engineering and Knowledge Engi-
neering, 6(2):161-177, 1996.

[6] Y-C. Wang and K -J. Lin, Implementing a General Real-Time
Scheduling Framework in the RED-Linux Real-Time Kernel.
20th IEEE Real-Time Systems Symp osium, 1999, Phoenix,
Arizona

[7] I. Ripoll, RTGA Real-time Graphic Analyzer , 2002,
http://bernia.disca.upv.es/rtportal/apps/rtga/index.html

[8] N.C. Audsley, A. Burns, M.F. Richardson and A.J. Wellings:
Stress: A Simulator for Hard Real-Time Systems. Software-
Practice and Experience, Vol. 24(6), p. 543, 564 (June 1994).

[9] Timewiz- An Architectural modelling, analysis, and simulation
environment for real-time systems. White paper,
http://www.timesys.com/pdf/timewiz_ds.pdf

[10] M. Dertouzos, Control Robotics: the procedural control of
physical processors. IFIP Congress, pp 807-813, 1974

[11] A.K. Mok, Fundamental Design Problems of Distributed
Systems for the Hard Real-Time Environment, Ph.D. Disser-
tation, MIT, 1983

